RN41/RN41N

Class 1 Bluetooth® Module with EDR Support

Features

• Fully qualified Bluetooth® version 2.1 module, supports version 2.1 + Enhanced Data Rate (EDR)
• ASCII command interface over UART
• Postage-stamp sized form factor:
 - RN41: 13.4 x 25.8 x 2 mm
 - RN41N: 13.4 x 20 x 2 mm
• Low-power (30 mA connected, < 10 mA sniff mode)
• UART (SPP or HCI) and USB (HCI only) data connection interfaces
• Sustained SPP data rates: 240 Kbps (Slave mode), 300 Kbps (Master mode)
• HCI data rates: 1.5 Mbps sustained, 3.0 Mbps burst in HCI mode
• Embedded Bluetooth stack profiles include: GAP, SDP, RFCOMM, L2CAP protocols, with SPP, HID, and DUN profile support (does not require any host stack).
• Bluetooth SIG qualified, end product listing
• Castellated SMT pads for easy and reliable PCB mounting
• Class 1 high-power amplifier with on-board ceramic chip antenna (RN41) or external antenna (RN41N)
• Compliance:
 - Modular Certified for the United States (FCC) and Canada (IC)
 - European R&TTE Directive Assessed Radio Module
 - Australia/New Zealand/Korea/Taiwan/Japan
 - Bluetooth SIG QDID
• Integrated Crystal, Internal Voltage Regulator, Matching Circuitry, Power Amplifier, Low Noise, Memory Amplifier and PCB Antenna
• Easy Integration into Final Product - Minimize Product Development, Quicker Time to Market
• Compatible with Microchip Microcontroller Families (PIC16F, PIC18F, PIC24F/H, dsPIC33 and PIC32)
• Up to 100 meter range

Applications

• Cable replacement
• Barcode scanners
• Measurement and monitoring systems
• Industrial sensors and controls
• Medical devices
RN41/RN41N MODULE VARIANTS(1)

<table>
<thead>
<tr>
<th>Model</th>
<th>Antenna</th>
<th>Firmware</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN41</td>
<td>Ceramic Chip</td>
<td>4.77, 6.15</td>
<td>Class 1, 2.1+EDR, SPP profile</td>
</tr>
<tr>
<td>RN41HCI</td>
<td>Ceramic Chip</td>
<td>N/A</td>
<td>Class 1, 2.0+EDR, HCI over UART</td>
</tr>
<tr>
<td>RN41U</td>
<td>Ceramic Chip</td>
<td>N/A</td>
<td>Class 1, 2.0+EDR, HCI over USB</td>
</tr>
<tr>
<td>RN41HID</td>
<td>Ceramic Chip</td>
<td>6.11</td>
<td>Class 1, 2.1+EDR, HID and SPP profiles</td>
</tr>
<tr>
<td>RN41APL</td>
<td>Ceramic Chip</td>
<td>5.36, 5.43, 5.45</td>
<td>Class 1, 2.1+EDR, SPP & MFi profiles</td>
</tr>
<tr>
<td>RN41N</td>
<td>External</td>
<td>4.77, 6.15</td>
<td>Class 1, 2.1+EDR, SPP profile</td>
</tr>
<tr>
<td>RN41NAPL</td>
<td>External</td>
<td>5.36, 5.43, 5.45</td>
<td>Class 1, 2.1+EDR, SPP and MFi profiles</td>
</tr>
</tbody>
</table>

Note 1: See **Section 4.0 “Ordering Information”** for customer part numbers. Information on firmware versions can be found on the RN41/RN41N product web page and the *Bluetooth Data Module Command Reference and Advanced Information User’s Guide*.

Table of Contents

1.0 Device Overview .. 4
2.0 Application Information .. 8
3.0 Regulatory Approval .. 13
4.0 Ordering Information .. 19
Appendix A: Revision History .. 21
The Microchip Web Site ... 23
Customer Change Notification Service .. 23
Customer Support ... 23
Product Identification System .. 25

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip’s Worldwide Web site: http://www.microchip.com
• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.
1.0 DEVICE OVERVIEW

The RN41/RN41N module is a small form factor, low-power, class 1 Bluetooth radio that is ideal for designers who want to add wireless capability to their products without spending significant time and money developing Bluetooth-specific hardware and software. The RN41/RN41N supports multiple interface protocols, is simple to design in, and is fully certified, making it a complete embedded Bluetooth solution. With its high-performance, chip antenna (RN41) or external antenna (RN41N), and support for Bluetooth EDR, the RN41/RN41N delivers up to a 3-Mbps data rate for distances up to 100 meters.

1.1 MCU Interface

The RN41/RN41N module is managed through ASCII commands via the UART and/or PIO signals. A MCU (micro-controller-unit) or host processor sends commands to module to configure features, read status, and manage Bluetooth data connections.

As shown in Figure 1-1, the UART TX and RX are required to communicate with module and transfer data across Bluetooth SPP connection.

Connecting the hardware flow control lines CTS and RTS is highly recommended for applications that transmit a continuous stream of data.

The module can be configured locally via the UART or over-the-air. To support instant cable replacement, auto-discovery/pairing does not require software configuration. Additionally, the module supports auto-connect master, I/O pin (DTR), and character-based trigger modes.

TABLE 1-1: ENVIRONMENTAL CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range (Operating)</td>
<td>-40°C ~ 85°C</td>
</tr>
<tr>
<td>Temperature Range (Storage)</td>
<td>-40°C ~ 85°C</td>
</tr>
<tr>
<td>Relative Humidity (Operating)</td>
<td>≤ 90%</td>
</tr>
<tr>
<td>Relative Humidity (Storage)</td>
<td>≤ 90%</td>
</tr>
<tr>
<td>Moisture Sensitivity Level</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE 1-2: ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (DC)</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>RX Supply Current</td>
<td>—</td>
<td>35</td>
<td>60</td>
<td>mA</td>
</tr>
<tr>
<td>TX Supply Current</td>
<td>—</td>
<td>65</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Average Power Consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby/Idle (Default Settings)</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>Connected (Normal Mode)</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>Connected (Low-Power Sniff)</td>
<td>—</td>
<td>8</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>Standby/Idle (Deep Sleep Enabled)</td>
<td>250</td>
<td>2.5</td>
<td>—</td>
<td>mA</td>
</tr>
</tbody>
</table>
TABLE 1-3: MODULE DIMENSIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RN41</th>
<th>RN41N</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>13.4 x 25.8 x 2</td>
<td>13.4 x 20 x 2</td>
<td>mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.045</td>
<td>0.040</td>
<td>oz.</td>
</tr>
</tbody>
</table>

TABLE 1-4: RADIO CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity at 0.1% BER</td>
<td>2.402</td>
<td>-80</td>
<td>-66</td>
<td></td>
<td>≤ -70 dBm</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>2.441</td>
<td>-80</td>
<td>-66</td>
<td></td>
<td>dBm</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>2.480</td>
<td>-80</td>
<td>-66</td>
<td></td>
<td>dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>RF Transmit Power<sup>(1)</sup> RN41</td>
<td>2.402</td>
<td>16.3</td>
<td></td>
<td></td>
<td>dBm</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>2.441</td>
<td>17.0</td>
<td></td>
<td></td>
<td>dBm</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>2.480</td>
<td>18.4</td>
<td></td>
<td></td>
<td>dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>RF Transmit Power<sup>(1)</sup> RN41N</td>
<td>2.402</td>
<td>11.9</td>
<td></td>
<td></td>
<td>dBm</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>2.441</td>
<td>10.9</td>
<td></td>
<td></td>
<td>dBm</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>2.480</td>
<td>9.9</td>
<td></td>
<td></td>
<td>dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>Initial Carrier Frequency Tolerance</td>
<td>2.402</td>
<td>5</td>
<td>75</td>
<td>75</td>
<td>kHz</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>2.441</td>
<td>5</td>
<td>75</td>
<td>75</td>
<td>kHz</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>2.480</td>
<td>5</td>
<td>75</td>
<td>75</td>
<td>kHz</td>
<td>kHz</td>
</tr>
<tr>
<td>20-dB Bandwidth for Modulated Carrier</td>
<td>—</td>
<td>900</td>
<td>1000</td>
<td>≤ 1000</td>
<td>kHz</td>
<td>kHz</td>
</tr>
<tr>
<td>Drift (Five Slots Packet)</td>
<td>—</td>
<td>15</td>
<td>—</td>
<td>40</td>
<td>kHz</td>
<td>kHz</td>
</tr>
<tr>
<td>Drift Rate</td>
<td>—</td>
<td>13</td>
<td>—</td>
<td>20</td>
<td>kHz</td>
<td>kHz</td>
</tr>
<tr>
<td>∆f<sub>1</sub><sub>avg</sub> Maximum Modulation</td>
<td>2.402</td>
<td>140</td>
<td>165</td>
<td>175</td>
<td>> 140 kHz</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>2.441</td>
<td>140</td>
<td>165</td>
<td>175</td>
<td>kHz</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>2.480</td>
<td>140</td>
<td>165</td>
<td>175</td>
<td>kHz</td>
<td>kHz</td>
</tr>
<tr>
<td>∆f<sub>2</sub><sub>avg</sub> Minimum Modulation</td>
<td>2.402</td>
<td>140</td>
<td>190</td>
<td>—</td>
<td>115 kHz</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>2.441</td>
<td>140</td>
<td>190</td>
<td>—</td>
<td>kHz</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>2.480</td>
<td>140</td>
<td>190</td>
<td>—</td>
<td>kHz</td>
<td>kHz</td>
</tr>
</tbody>
</table>

TABLE 1-5: DIGITAL I/O CHARACTERISTICS

<table>
<thead>
<tr>
<th>3.0 V ≤ VDD ≤ 3.3 V</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Logic Level Low</td>
<td>-0.4</td>
<td>—</td>
<td>+0.8</td>
<td>V</td>
</tr>
<tr>
<td>Input Logic Level High</td>
<td>0.7 VDD</td>
<td>—</td>
<td>VDD + 0.4</td>
<td>V</td>
</tr>
<tr>
<td>Output Logic Level Low</td>
<td>—</td>
<td>—</td>
<td>0.2</td>
<td>V</td>
</tr>
<tr>
<td>Output Logic Level High</td>
<td>VDD - 0.2</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>All I/O pins (Except reset) Default to Weak Pull Down</td>
<td>+0.2</td>
<td>+1.0</td>
<td>+5.0</td>
<td>μA</td>
</tr>
</tbody>
</table>
Figure 1-2 and Figure 1-3 show the modules’ dimensions.

FIGURE 1-2: RN41 MODULE DIMENSIONS

(Top View) (Side View)

Dimensions are in millimeters

Tolerances:
PCB Outline: +/- 0.13 mm
PCB Thickness: +/- 0.1 mm

Figure 1-4 and Figure 1-5 show the pinout and Table 1-6 describes the module’s pins.

FIGURE 1-4: RN41 PIN DIAGRAM

FIGURE 1-5: RN41N PIN DIAGRAM
TABLE 1-6: PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Power</td>
<td>Ground reference</td>
</tr>
<tr>
<td>2</td>
<td>SPI_MOSI</td>
<td>DI</td>
<td>(Optional) Factory diagnostic and test. See Section 2.8 “SPI Interface”.</td>
</tr>
<tr>
<td>3</td>
<td>GPIO6</td>
<td>DIO</td>
<td>Set Bluetooth master (high = auto-master mode)</td>
</tr>
<tr>
<td>4</td>
<td>GPIO7</td>
<td>DIO</td>
<td>Set baud rate (high = force 9,600, low = 115K or firmware setting)</td>
</tr>
<tr>
<td>5</td>
<td>RESET</td>
<td>DI</td>
<td>Active-low Reset</td>
</tr>
<tr>
<td>6</td>
<td>SPI_CLK</td>
<td>DI</td>
<td>(Optional) Factory diagnostic and test. See Section 2.8 “SPI Interface”.</td>
</tr>
<tr>
<td>7</td>
<td>PCM_CLK</td>
<td>DIO</td>
<td>(Do not connect) PCM interface (1)</td>
</tr>
<tr>
<td>8</td>
<td>PCM_SYNC</td>
<td>DIO</td>
<td>(Do not connect) PCM interface (1)</td>
</tr>
<tr>
<td>9</td>
<td>PCM_IN</td>
<td>DI</td>
<td>(Do not connect) PCM interface (1)</td>
</tr>
<tr>
<td>10</td>
<td>PCM_OUT</td>
<td>DO</td>
<td>(Do not connect) PCM interface (1)</td>
</tr>
<tr>
<td>11</td>
<td>VDD</td>
<td>Power</td>
<td>Positive Supply</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>Power</td>
<td>Ground reference</td>
</tr>
<tr>
<td>13</td>
<td>UART_RX</td>
<td>DI</td>
<td>UART receive input</td>
</tr>
<tr>
<td>14</td>
<td>UART_TX</td>
<td>DO</td>
<td>UART transmit output</td>
</tr>
<tr>
<td>15</td>
<td>UART_RTS</td>
<td>DO</td>
<td>UART RTS, goes high to disable host transmitter</td>
</tr>
<tr>
<td>16</td>
<td>UART_CTS</td>
<td>DI</td>
<td>UART CTS, if set high, it disables transmitter</td>
</tr>
<tr>
<td>17</td>
<td>USB_D+</td>
<td>DIO</td>
<td>USB port. 1.5K pullup activated when USB port is ready (~500 ms after reset).</td>
</tr>
<tr>
<td>18</td>
<td>USB_D-</td>
<td>DIO</td>
<td>USB port</td>
</tr>
<tr>
<td>19</td>
<td>GPIO2</td>
<td>DIO</td>
<td>Status, high when connected, low otherwise. See Section 2.3 “Connection Status”.</td>
</tr>
<tr>
<td>20</td>
<td>GPIO3</td>
<td>DIO</td>
<td>Auto discovery = high</td>
</tr>
<tr>
<td>21</td>
<td>GPIO5</td>
<td>DIO</td>
<td>Status, toggles based on state, low on connect. See Section 2.3 “Connection Status”.</td>
</tr>
<tr>
<td>22</td>
<td>GPIO4</td>
<td>DIO</td>
<td>Set factory defaults. See Section 2.2 “Factory Reset Using GPIO4”.</td>
</tr>
<tr>
<td>23</td>
<td>SPI_CSBI</td>
<td>DI</td>
<td>(Optional) Factory diagnostic and test. See Section 2.8 “SPI Interface”.</td>
</tr>
<tr>
<td>24</td>
<td>SPI_MISO</td>
<td>DO</td>
<td>(Optional) Factory diagnostic and test. See Section 2.8 “SPI Interface”.</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>Power</td>
<td>Ground reference (RN41N only)</td>
</tr>
<tr>
<td>26</td>
<td>RF_ANT</td>
<td>AIO</td>
<td>Antenna, 50-Ohm impedance (RN41N only)</td>
</tr>
<tr>
<td>27</td>
<td>GND</td>
<td>Power</td>
<td>Ground reference (RN41N only)</td>
</tr>
<tr>
<td>28</td>
<td>GND</td>
<td>Power</td>
<td>Ground reference</td>
</tr>
<tr>
<td>29</td>
<td>GND</td>
<td>Power</td>
<td>Ground reference</td>
</tr>
<tr>
<td>30</td>
<td>AIO0</td>
<td>AIO</td>
<td>(Not used) Optional analog input.</td>
</tr>
<tr>
<td>31</td>
<td>GPIO8</td>
<td>DIO</td>
<td>UART TX/RX data activity</td>
</tr>
<tr>
<td>32</td>
<td>GPIO9</td>
<td>DIO</td>
<td>I/O</td>
</tr>
<tr>
<td>33</td>
<td>GPIO10</td>
<td>DIO</td>
<td>I/O (remote DTR signal)</td>
</tr>
<tr>
<td>34</td>
<td>GPIO11</td>
<td>DIO</td>
<td>I/O (remote RTS signal)</td>
</tr>
<tr>
<td>35</td>
<td>AIO1</td>
<td>AIO</td>
<td>(Not used) Optional analog input</td>
</tr>
</tbody>
</table>

Note 1: Pin numbers 7 through 10 are reserved for future use.
2.0 APPLICATION INFORMATION

The following sections provide information on designing with the RN41/RN41N module, including radio interference, factory reset, solder reflow profile, connection status, and so on.

2.1 Reset Circuit

The RN41/RN41N contains a weak internal pull-up to VCC, and the reset polarity is active low. The module’s reset pin has an optional Power-on Reset circuit with a delay, which should only be required if the input power supply has a very slow ramp or tends to bounce or have instability on power-up. Often a microcontroller or embedded CPU I/O is available to generate the reset once power is stable. If not, designers can use one of the many low-cost power supervisor chips available, such as the MCP809 or MCP102/121.

2.2 Factory Reset Using GPIO4

It is recommended to connect the GPIO4 pin to a switch, jumper, or resistor so it can be accessed. This pin can be used to reset the module to its factory default settings, which is critical in situations where the module has been misconfigured. To reset the module to the factory defaults, GPIO4 should be high on power-up and then toggle between low and high twice with a 1 second wait between the low-high transitions.

2.3 Connection Status

GPIO5 is available to drive an LED, and it blinks at various speeds to indicate status, see Table 2-1. GPIO2 is an output that directly reflects the connection state as shown in Table 2-2.

TABLE 2-1: GPIO5 STATUS

<table>
<thead>
<tr>
<th>GPIO5 Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toggle at 1 Hz</td>
<td>The module is discoverable and waiting for a connection.</td>
</tr>
<tr>
<td>Toggle at 10 Hz</td>
<td>The module is in command mode.</td>
</tr>
<tr>
<td>High</td>
<td>The module is connected to another device over Bluetooth.</td>
</tr>
</tbody>
</table>

TABLE 2-2: GPIO2 STATUS

<table>
<thead>
<tr>
<th>GPIO5 Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>The module is connected to another device over Bluetooth.</td>
</tr>
<tr>
<td>Low</td>
<td>The module is not connected over Bluetooth.</td>
</tr>
</tbody>
</table>

2.4 Module Mounting Details

Figure 2-1 and Figure 2-2 show the recommended PCB footprint for the RN41 and RN41N, respectively. When laying out the carrier board for the RN41 module, the areas under the antenna and shielding connections should not have surface traces, ground planes, or exposed vias.

Figure 2-3 and Figure 2-4 show the recommended mounting details for the RN41 and RN41N, respectively. For optimal radio performance, the RN41 module’s antenna end should protrude at least 31 mm beyond any metal enclosure.

Figure 2-5 shows examples of good, bad, and acceptable positioning of the RN41 on the host PCB.

FIGURE 2-1: RN41 RECOMMENDED PCB FOOTPRINT

FIGURE 2-2: RN41N RECOMMENDED PCB FOOTPRINT

FIGURE 2-3: RN41 MOUNTING DETAILS

FIGURE 2-4: RN41N MOUNTING DETAILS

FIGURE 2-5: RN41 MOUNTING EXAMPLES
FIGURE 2-2: RN41N RECOMMENDED PCB FOOTPRINT

(Top View)

Dimensions are in millimeters

FIGURE 2-3: RN41 MODULE MOUNTING DETAILS

(Top View)

Keep area around antenna (approximately 31 mm) clear of metallic structures for best performance.

Dimensions are in millimeters

Note: Example U.FL connector layout

FIGURE 2-4: RN41N MODULE MOUNTING DETAILS

(Top View)

Shield Pads X4 0.8 mm x 1.3 mm
Do not locate vias or signal traces under Shield Pads

Dimensions are in millimeters
2.5 External Antenna Types (RN41N)

The RN41N module’s antenna pin (pin 25) provides a 50-ohm impedance to external antennas. Pin 25 can connect directly to a coaxial cable or to an antenna connector such as a U.FL or reverse polarity SMA.

The PCB trace from pin 25 to the coaxial cable or connector should be less than 0.2 inches (5 mm) for minimum loss and the best impedance match. If the PCB trace is longer, it should be a 50-ohm impedance microstrip trace. Connect adjacent ground pins 24 and 26 to a low-impedance ground on the host PCB and the antenna connection. Figure 2-4 gives example host PCB layout to a U.FL connector.

Modular certification of the RN41N module was performed with the external antenna types listed in Table 2-3. Refer to Section 3.0 “Regulatory Approval” for specific regulatory requirements by country.

TABLE 2-3: TESTED EXTERNAL ANTENNA TYPES

<table>
<thead>
<tr>
<th>Type</th>
<th>Gain (dBi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monopole</td>
<td>0.56</td>
</tr>
<tr>
<td>Whip</td>
<td>8</td>
</tr>
<tr>
<td>Yagi</td>
<td>15</td>
</tr>
</tbody>
</table>

2.6 HCI Mode

Microchip offers the Host Controller Interface (HCI) mode in addition to the standard operational mode of its Bluetooth modules (standard mode refers to the on-board stack running on the module).

In HCI mode, the on-board stack is bypassed and the module is put in a state that runs the Bluetooth baseband. The HCI provides a command reference interface to the baseband controller and the link manager, and provides access to the hardware status and control registers. This interface provides a uniform method for accessing the Bluetooth baseband capabilities.

In this mode, the Bluetooth stack is no longer on-board the module. It is offloaded to the interfacing host processor. The Bluetooth module is used as a radio, performing the lower level MAC functionalities, while the application stack runs on the host processor.

Using the module in HCI mode enables designers to implement profiles that are not natively supported on the Bluetooth module.

Note: HCI mode is only available by ordering part RN41HCI for UART interface; or RN41U for USB interface.
Microchip offers HCI mode in two hardware interfaces:

- HCI over UART (RN41HCI-I/RM)
- HCI over USB (RN41U-I/RM)

2.6.1 HCI OVER UART

In this mode, the hardware interface between the host processor and the Bluetooth module is the UART configured at 115.2 Kbps. You must interface the flow control signals between the host processor and the Bluetooth module for the HCI interface to work. Failure to do so can cause the host processor and the Bluetooth module to become out of sync and break the Bluetooth link.

2.6.2 HCI OVER USB

In this mode, the hardware interface between the host processor and the Bluetooth module is the USB. In this architecture, the Bluetooth module is the USB slave and the host processor is the USB host.

Using the USB interface offers the advantage of a faster data link between the Bluetooth module and the host processor. With this architecture, it is possible to achieve Bluetooth's theoretical maximum throughput of 3 Mbps.

2.7 Soldering Recommendations

The RN41/RN41N wireless module was assembled using standard lead-free reflow profile IPC/JEDEC J-STD-020.

The module can be soldered to the host PCB using standard leaded and lead-free solder reflow profiles.

To avoid damaging the module, the following recommendations are given:

- Microchip Technology Application Note, "AN233 Solder Reflow Recommendation" (DS00233) provides solder reflow recommendations
- Do not exceed peak temperature (T_p) of 250 °C
- Refer to the solder paste data sheet for specific reflow profile recommendations
- Use no-clean flux solder paste
- Do not wash as moisture can be trapped under the shield
- Use only one flow. If the PCB requires multiple flows, apply the module on the final flow.

2.8 SPI Interface

The SPI Interface is primarily used for factory test and diagnostics. Although not required, the SPI interface is useful for restoring a corrupted flash image or enabling test modes required for certification testing.

When module is installed in a final product that requires European type approval, see Section 3.3 "Europe", it is recommended that the SPI interface should be accessible via 6-pin header as shown in Figure 2-6.

2.9 Bluetooth SIG QDID

The RN41 has a QDID registered with the Bluetooth SIG. The manufacturer using the RN41 module in their end product can reference this QDID when filing an EPL (end product listing) to use Bluetooth® brand and logo. Please visit the Bluetooth SIG at www.bluetooth.org for more information.

Declaration ID: B013180
QDID: 7786
2.10 Application Schematic

Figure 2-7 shows an example application circuit. This schematic is for the RN-41-EK development tool. Refer to Section 1.1 “MCU Interface” for details on how to connect RN41/RN41N to a microcontroller.

FIGURE 2-7: TYPICAL APPLICATION CIRCUIT
3.0 REGULATORY APPROVAL

This section outlines the regulatory information for the RN41/RN41N module for the following countries:
- United States
- Canada
- Europe
- Australia
- New Zealand

3.1 United States

The RN41/RN41N module has received Federal Communications Commission (FCC) CFR47 Telecommunications, Part 15 Subpart C “Intentional Radiators” modular approval in accordance with Part 15.212 Modular Transmitter approval. Modular approval allows the end user to integrate the RN41/RN41N module into a finished product without obtaining subsequent and separate FCC approvals for intentional radiation, provided no changes or modifications are made to the module circuitry. Changes or modifications could void the user's authority to operate the equipment. The end user must comply with all of the instructions provided by the Grantee, which indicate installation and/or operating conditions necessary for compliance.

The finished product is required to comply with all applicable FCC equipment authorizations regulations, requirements and equipment functions not associated with the transmitter module portion. For example, compliance must be demonstrated to regulations for other transmitter components within the host product; to requirements for unintentional radiators (Part 15 Subpart B “Unintentional Radiators”), such as digital devices, computer peripherals, radio receivers, etc.; and to additional authorization requirements for the non-transmitter functions on the transmitter module (i.e., Verification, or Declaration of Conformity) (e.g., transmitter modules may also contain digital logic functions) as appropriate.

3.1.1 LABELING AND USER INFORMATION REQUIREMENTS

The RN41/RN41N module has been labeled with its own FCC ID number, and if the FCC ID is not visible when the module is installed inside another device, then the outside of the finished product into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording as follows:

RN41:
Contains Transmitter Module FCC ID: T9JRN41-3
or
Contains FCC ID: T9JRN41-3

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

| RN41N: |
| Contains Transmitter Module FCC ID: OA3-RN41N |
| or |
| Contains FCC ID: OA3-RN41N |

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
A user’s manual for the product should include the following statement:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Additional information on labeling and user information requirements for Part 15 devices can be found in KDB Publication 784748 available at the FCC Office of Engineering and Technology (OET) Laboratory Division Knowledge Database (KDB) https://apps.fcc.gov/oetcf/kdb/index.cfm.

3.1.2 RF EXPOSURE

All transmitters regulated by FCC must comply with RF exposure requirements. KDB 447498 General RF Exposure Guidance provides guidance in determining whether proposed or existing transmitting facilities, operations or devices comply with limits for human exposure to Radio Frequency (RF) fields adopted by the Federal Communications Commission (FCC).

From the RN41 FCC Grant: Modular Approval. Power Output listed is conducted. The antenna(s) used for this device must be installed to provide a separation distance of at least 20 cm from all persons, and must not be co-located or operating in conjunction with any other antenna or transmitter. This grant is valid only when the device is sold to OEM integrators and the OEM integrators are instructed to ensure that the end user has no manual instructions to remove or install the device. End users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF Exposure compliance.

If the RN41/RN41N module is used in a portable application (i.e., the antenna is less than 20 cm from persons during operation), the integrator is responsible for performing Specific Absorption Rate (SAR) testing in accordance with the guidance in KDB 447498.

3.1.3 APPROVED EXTERNAL ANTENNA TYPES

To maintain modular approval in the United States, only the antenna types that have been tested shall be used. It is permissible to use different antenna manufacturer provided the same antenna type and antenna gain (equal to or less than) is used.

Testing of the RN41 module was performed with the antenna types listed in Table 2-3.

3.1.4 HELPFUL WEB SITES

3.2 Canada

The RN41/RN41N module has been certified for use in Canada under Industry Canada (IC) Radio Standards Specification (RSS) RSS-210 and RSSGen. Modular approval permits the installation of a module in a host device without the need to recertify the device.

3.2.1 LABELING AND USER INFORMATION REQUIREMENTS

Labeling Requirements for the Host Device (from Section 3.2.1, RSS-Gen, Issue 3, December 2010): The host device shall be properly labeled to identify the module within the host device.
The Industry Canada certification label of a module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labeled to display the Industry Canada certification number of the module, preceded by the words “Contains transmitter module”, or the word “Contains”; or similar wording expressing the same meaning, as follows:

RN-41:
Contains transmitter module IC: 6514A-RN413

RN-41N:
Contains transmitter module IC: 7693A-RN41N

User Manual Notice for License-Exempt Radio Apparatus (from Section 7.1.3 RSS-Gen, Issue 3, December 2010): User manuals for license-exempt radio apparatus shall contain the following or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both:

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Transmitter Antenna (from Section 7.1.2 RSS-Gen, Issue 3, December 2010): User manuals for transmitters shall display the following notice in a conspicuous location:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

The above notice may be affixed to the device instead of displayed in the user manual.

3.2.2 RF EXPOSURE

All transmitters regulated by IC must comply with RF exposure requirements listed in RSS-102 - Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands).

3.2.3 APPROVED EXTERNAL ANTENNA TYPES

Transmitter Antenna (from Section 7.1.2 RSS-Gen, Issue 3, December 2010):

The RN41N module can only be sold or operated with antennas with which it was approved. Transmitter may be approved with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest gain antenna of each combination of transmitter and antenna type for which approval is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type having equal or lesser gain as an antenna that had been successfully tested with the transmitter, will also be considered approved with the transmitter, and may be used and marketed with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device’s antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power limits.

Approved external antenna types for the RN41N module are listed in Table 2-3.

3.2.4 HELPFUL WEB SITES

3.3 Europe

The RN41/RN41N module is an R&TTE Directive assessed radio module that is CE marked and has been manufactured and tested with the intention of being integrated into a final product.

The RN41/RN41N module has been tested to R&TTE Directive 1999/5/EC Essential Requirements for Health and Safety (Article (3.1(a)), Electromagnetic Compatibility (EMC) (Article 3.1(b)), and Radio (Article 3.2) and are summarized in Table 3-1: European Compliance Testing. A Notified Body Opinion has also been issued. All test reports are available on the RN41/RN41N product web page at http://www.microchip.com.

Note: To maintain conformance to the testing listed in Table 3-1, the module shall be installed in accordance with the installation instructions in this data sheet and shall not be modified.

When integrating a radio module into a completed product, the integrator becomes the manufacturer of the final product and is therefore responsible for demonstrating compliance of the final product with the essential requirements of the R&TTE Directive.

3.3.1 LABELING AND USER INFORMATION REQUIREMENTS

The label on the final product which contains the RN41/RN41N module must follow CE marking requirements. The “R&TTE Compliance Association Technical Guidance Note 01” provides guidance on final product CE marking.

3.3.2 ANTENNA REQUIREMENTS

From R&TTE Compliance Association document Technical Guidance Note 01:

Provided the integrator installing an assessed radio module with an integral or specific antenna and installed in conformance with the radio module manufacturer’s installation instructions requires no further evaluation under Article 3.2 of the R&TTE Directive and does not require further involvement of an R&TTE Directive Notified Body for the final product. [Section 2.2.4]

The European Compliance Testing listed in Table 3-2 was performed using the antenna types listed in Table 2-3.

3.3.3 HELPFUL WEB SITES

A document that can be used as a starting point in understanding the use of Short Range Devices (SRD) in Europe is the European Radio Communications Committee (ERC) Recommendation 70-03 E, which can be downloaded from the European Radio Communications Office (ERO) at: http://www.ero.dk/.

Additional helpful web sites are:

- European Radio Communications Office (ERO): http://www.ero.dk/
- The Radio and Telecommunications Terminal Equipment Compliance Association (R&TTE CA): http://www.rtteca.com/

Note: To maintain conformance to the testing listed in Table 3-1, the module shall be installed in accordance with the installation instructions in this data sheet and shall not be modified.

When integrating a radio module into a completed product, the integrator becomes the manufacturer of the final product and is therefore responsible for demonstrating compliance of the final product with the essential requirements of the R&TTE Directive.
3.4 Australia

The Australia radio regulations do not provide a modular approval policy similar to the United States (FCC) and Canada (IC). However, RN41/RN41N module RF transmitter test reports can be used in part to demonstrate compliance in accordance with ACMA Radio communications “Short Range Devices” Standard 2004 (The Short Range Devices standard calls up the AS/NZS 4268:2008 industry standard). The RN41/RN41N module test reports can be used as part of the product certification and compliance folder. For more information on the RF transmitter test reports, contact Microchip Technology Australia sales office.

To meet overall Australian final product compliance, the developer must construct a compliance folder containing all relevant compliance test reports e.g. RF, EMC, electrical safety and DoC (Declaration of Conformity) etc. It is the responsibility of the integrator to know what is required in the compliance folder for ACMA compliance. All test reports are available on the RN41/RN41N product web page at http://www.microchip.com. For more information on Australia compliance, refer to the Australian Communications and Media Authority web site http://www.acma.gov.au/.

Table 3-1: RN41 European Compliance Testing

<table>
<thead>
<tr>
<th>Certification</th>
<th>Standards</th>
<th>Article</th>
<th>Laboratory</th>
<th>Report Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health</td>
<td>EN 62479:2010</td>
<td></td>
<td></td>
<td>W6R21301-13005-62479</td>
<td>2013-10-03</td>
</tr>
<tr>
<td>EMC</td>
<td>EN 301 489-1 V1.9.2 (2011-09)</td>
<td>[3.1(b)]</td>
<td></td>
<td>W6R21301-13005-E-16</td>
<td>2013-09-09</td>
</tr>
<tr>
<td></td>
<td>EN 301 489-17 V2.2.1 (2012-09)</td>
<td></td>
<td></td>
<td>W6R21301-13005-T-45</td>
<td>2013-10-03</td>
</tr>
<tr>
<td>Radio</td>
<td>EN 300 328 V1.8.1 (2012-06)</td>
<td>(3.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notified Body Opinion</td>
<td>CIE0681</td>
<td>—</td>
<td>Eurofins Product Service GmbH</td>
<td>U9M-1305-2867-C-V01</td>
<td>2013-10-16</td>
</tr>
</tbody>
</table>

Table 3-2: RN41N European Compliance Testing

<table>
<thead>
<tr>
<th>Certification</th>
<th>Standards</th>
<th>Article</th>
<th>Laboratory</th>
<th>Report Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>EN 301 489-1 V1.9.2 (2011-09)</td>
<td>(3.1b)</td>
<td></td>
<td>W6M21209-12744-E-16</td>
<td>2012-11-12</td>
</tr>
<tr>
<td></td>
<td>EN 301 489-17 V2.2.1 (2012-09)</td>
<td></td>
<td></td>
<td>W6M21209-12744-T-45</td>
<td>2012-11-12</td>
</tr>
<tr>
<td>Radio</td>
<td>EN 300 328 V1.7.1 (2006-10)</td>
<td>(3.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.1 External Antenna Requirements

The compliance testing listed in Table 3-2 was performed using the antenna types listed in Table 2-3.

3.4.2 Helpful Web Sites

The Australian Communications and Media Authority: www.acma.gov.au.
3.5 New Zealand

The New Zealand radio regulations do not provide a modular approval policy similar to the United States (FCC) and Canada (IC). However, RN41/RN41N module RF transmitter test reports can be used in part to demonstrate compliance against the New Zealand “General User Radio License for Short Range Devices”. New Zealand Radio communications (Radio Standards) Notice 2010 calls up the AS / NZS 4268:2008 industry standard. The RN41/RN41N module test reports can be used as part of the product certification and compliance folder. All test reports are available on the RN41/RN41N product web page at http://www.microchip.com. For more information on the RF transmitter test reports, contact Microchip Technology sales office.

Information on the New Zealand short range devices license can be found in the following web links:
and

To meet overall New Zealand final product compliance, the developer must construct a compliance folder containing all relevant compliance test reports e.g. RF, EMC, electrical safety and DoC (Declaration of Conformity) etc. It is the responsibility of the developer to know what is required in the compliance folder for New Zealand Radio communications. For more information on New Zealand compliance, refer to the web site http://www.rsm.govt.nz/.

3.5.1 EXTERNAL ANTENNA REQUIREMENTS

The compliance testing listed in Table 3-2 was performed using the antenna types listed in Table 2-3.

3.5.2 HELPFUL WEB SITES

4.0 ORDERING INFORMATION

Table 4-1 provides ordering information for the RN41/RN41N module.

<table>
<thead>
<tr>
<th>Part Number (1)</th>
<th>Firmware (2)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN41-I/RM</td>
<td>Latest Production</td>
<td>Class 1, 2.1+EDR, SPP profile</td>
</tr>
<tr>
<td>RN41-I/RM615</td>
<td>6.15</td>
<td>Class 1, 2.1+EDR, SPP profile</td>
</tr>
<tr>
<td>RN41-I/RM477</td>
<td>4.77</td>
<td>Class 1, 2.1+EDR, SPP profile</td>
</tr>
<tr>
<td>RN41HCI-I/RM</td>
<td>N/A</td>
<td>Class 1, 2.0+EDR, HCI over UART</td>
</tr>
<tr>
<td>RN41U-I/RM</td>
<td>N/A</td>
<td>Class 1, 2.0+EDR, HCI over USB</td>
</tr>
<tr>
<td>RN41HID-I/RM</td>
<td>6.11</td>
<td>Class 1, 2.1+EDR, HID and SPP profiles</td>
</tr>
<tr>
<td>RN41APL-I/RM</td>
<td>Latest Production</td>
<td>Class 1, 2.1+EDR, SPP and MFi profiles</td>
</tr>
<tr>
<td>RN41APL-I/RM545</td>
<td>5.45</td>
<td>Class 1, 2.1+EDR, SPP and MFi profiles</td>
</tr>
<tr>
<td>RN41APL-I/RM543</td>
<td>5.43</td>
<td>Class 1, 2.1+EDR, SPP and MFi profiles</td>
</tr>
<tr>
<td>RN41N-I/RM</td>
<td>Latest Production</td>
<td>Class 1, 2.1+EDR, SPP profile</td>
</tr>
<tr>
<td>RN41N-I/RM615</td>
<td>6.15</td>
<td>Class 1, 2.1+EDR, SPP profile</td>
</tr>
<tr>
<td>RN41N-I/RM477</td>
<td>4.77</td>
<td>Class 1, 2.1+EDR, SPP profile</td>
</tr>
<tr>
<td>RN41NAPL-I/RM</td>
<td>Latest Production</td>
<td>Class 1, 2.1+EDR, SPP and MFi profiles</td>
</tr>
<tr>
<td>RN41NAPL-I/RM545</td>
<td>5.45</td>
<td>Class 1, 2.1+EDR, SPP and MFi profiles</td>
</tr>
<tr>
<td>RN41NAPL-I/RM543</td>
<td>5.43</td>
<td>Class 1, 2.1+EDR, SPP and MFi profiles</td>
</tr>
</tbody>
</table>

Note 1: For other configurations, contact Microchip directly.

2: When ordering the standard part number (customer part number without firmware version), the customer will receive the latest firmware version depending on production date and availability. It is highly recommended to order part number by specific firmware version to ensure receiving consistent firmware version. Information on firmware versions can be found on the RN41/RN41N product web page and the “Bluetooth Data Module Command Reference and Advanced Information User’s Guide”.

Go to http://www.microchip.com for current pricing and a list of distributors carrying Microchip products.
APPENDIX A: REVISION HISTORY

Revision A (August 2014)

This is the initial released version of the document in the Microchip format. This replaces Roving Networks RN41/RN41N Data Sheet.
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>I</th>
<th>RM</th>
<th>XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN41</td>
<td>UART, Ceramic Chip Antenna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN41N</td>
<td>UART, External Antenna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN41HCI</td>
<td>HCI over UART, Ceramic Chip Antenna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN41U</td>
<td>HCI over USB, Ceramic Chip Antenna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN41APL</td>
<td>SPP and MFi profiles, Ceramic Chip Antenna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td>I</td>
<td>= -40°C to +85°C</td>
<td></td>
</tr>
<tr>
<td>Package: *</td>
<td>RM</td>
<td>Radio Module</td>
<td></td>
</tr>
</tbody>
</table>

All package offerings are Pb Free (Lead Free)

Examples:

a) RN41-I/RM: Ceramic Chip Antenna
 Latest production firmware version
b) RN41-I/RM615: Ceramic Chip Antenna
 Firmware version 6.15
c) RN41-I/RM77: Ceramic Chip Antenna
 Firmware version 4.77
d) RN41APL-I/RM: Ceramic Chip Antenna
 Latest production firmware version
e) RN41APL-I/RM543: Ceramic Chip Antenna
 Firmware version 5.43
f) RN41HCI-I/RM: Ceramic Chip Antenna
 HCI over UART
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, Optolzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, I CSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkt, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-460-7

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7243
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suits 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3670400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

03/25/14